
KARLSTADS UNIVERSITET

Report DVGB06 - Tillämpad Programmering S13

Anders Nord - andno922@student.liu.se

August 18, 2013

This report will discuss how to create a simplis-
tic game-engine in WebGL. Included features
are:

• Shadow mapping

• Blinn-Phong shading model

• .obj-file loader

• Applying textures

• Simple bounding box collision detection

• Parallax scrolling

CONTENTS

1 Introduction 1
1.1 Structure of the report 1

2 Method 2
2.1 Getting started 2
2.2 A quick look at how the engine

is built up 2
2.3 Game control and physics 2
2.4 Collision detection 2

2.5 Light 3
2.6 perspective, FOV and aspect-ratio 3
2.7 Shadow mapping 3
2.8 object files reader 3
2.9 Textures 3
2.10 Parallax scrolling 4

3 Detailed description 4
3.1 Collision detection 4
3.2 Light 5

3.2.1 Blinn-Phong shading
model 5

3.3 Shadow-mapping 6

4 Result 8
4.0.1 Computer specs 10
4.0.2 Performance measure-

ments 10

5 Discussion 10

1 INTRODUCTION

To create something as extensive as a game-
engine is a great challenge. Where to start?

1

What is the next step? How will this affect fu-
ture implementations in the code?

This report will address many common con-
cepts in computer(game) graphics. Computer
games have been played for a long time now.
But to be able to just enter a website and get
the fantastic graphics that WebGL can provide
if implemented correctly is something new to
many. Even though WebGL has been around
for a while, now is the time web browser devel-
opers really have started to implement it as a
standard feature. There is still a lot of fixes to
be done and some web browsers need special
treatment. For this project google chrome was
used as a web browser.

For a look at the engine, visit
http://andersnord.bitbucket.org/.

1.1 STRUCTURE OF THE REPORT

First an overview of the project will be pre-
sented. The main steps will be examined su-
perficially.

After that a more detailed explanation of the
more technical steps will be provided.

2 METHOD

The game engine was implemented in We-
bGL using shaders. WebGL communicates
with the graphics-card through OpenGL ES
2.0-standard shaders. To access these in html,
JavaScript is being utilized. The matrix library
used was glMatrix v0.9.5 [1].

2.1 GETTING STARTED

The first thing to do is choose some sort of
design pattern to follow. This will make it
much easier later in the project. In this project

the MVC(Model View Controller) was applied.
This separates the input, calculations and ren-
dering. By doing this it is easier to keep track
on what is going on and where.

The second thing is to start using some sort of
Software development process. Online Kan-
ban [2] was used for this project, which is a
version of scrum.

The third thing would be to create some sort
of time schedule for the project and update it
once a week.

The fourth thing is to create the basic code-
base for the project. In this case it would be
setting up the shaders and compiling them,
creating a render loop and get something ba-
sic to show up on the screen. See fig: 4.1.

The fifth thing is to use some sort of version
control system designed to handle projects
online. This project used bitbucket [11], but
another popular choice is github [10].

2.2 A QUICK LOOK AT HOW THE ENGINE IS

BUILT UP

Fig: 2.1 is a screenshot from the final ver-
sion of the engine. The flying islands in the
background are 2D planes with attached PNG-
textures. The whole background is just dif-
ferent 2D planes with textures on them. The
player, tree, flying stone islands and the low-
poly sphere are 3D objects.

Figure 2.1: Screenshot from end product

2

2.3 GAME CONTROL AND PHYSICS

Keyboard keys are easily obtained through
JavaScript. The player is then translated ac-
cording to the input the player is giving. The
physics are just simple gravity and friction.

2.4 COLLISION DETECTION

The implemented collocation detection is a
bounding box in two dimensions. Every object
in the engine has a scaled invisible rectangle
around them. All the mathematical calcula-
tions treating collisions are taking these into
consideration, not the actual geometry of the
object. See fig: 2.2.

Figure 2.2: The rectangles are what is really
colliding, not the 3D-models.

2.5 LIGHT

For all of the 3D-objects a value is being calcu-
lated depending on a light source. The model
used is Blinn-Phong-shading. This creates
beautiful specular highlights, see fig 2.3

Figure 2.3: Specular highlight

2.6 PERSPECTIVE, FOV AND

ASPECT-RATIO

To get a sense of FOV(Field Of View), the
perspective-matrix from the glMatrix library
[1] was used . This also takes the aspect-ratio
into account. See fig 2.4 and 2.5 for a compar-
ison.

Figure 2.4: Before adding perspective matrix

3

Figure 2.5: After adding perspective matrix

2.7 SHADOW MAPPING

This is a method often used in real-time
applications to create shadows. First a
depth-buffer-texture is being rendered via
an FBO(Frame Buffer Object) from the light-
source point of view. This texture is then being
used to calculate if a vertex is being blocked
and shadowed by any object in the scene.

2.8 OBJECT FILES READER

The engine uses a simple .obj-file-reader. It
has been specifically written for blender-files,
but should be able to handle this format gener-
ally [7]. When using an .obj file with verticies,
normals and UV-coordinates, three arrays ac-
cording to the triangle-list in the object file,
will be created.

2.9 TEXTURES

Applying textures to an object is not very dif-
ficult. Without the UV-coordinates though,
textures become really dull. What they do
is telling the program which position in the
texture a specific vertex should get its colour
from, see fig 2.7. Textures in general really
brightens up the experiance. Compare fig: 2.1
with fig: 2.6.

Figure 2.6: Before adding textures

Figure 2.7: UV mapping [9]

2.10 PARALLAX SCROLLING

This is a method where many different 2D
planes are being placed with different dis-
tances to the camera. Then when side-
scrolling it creates a feeling of depth and move-
ment in the background. See fig: 2.8.

Figure 2.8: Parallax scrolling created with lay-
ers of planes. [8]

4

3 DETAILED DESCRIPTION

3.1 COLLISION DETECTION

The collision detection is using bounding
boxes. The reasons for this is that it is all about
the question "is rectangle A inside rectangle
B?". If this calculation was done for every poly-
gon, it would be very computationally inten-
sive. But for rectangles it is much faster, it is
also easier to implement.

So the things needed to be kept in mind are:
"Is A inside B?" and if it is, then "from which
direction did it come?". To be able to answer
these questions, all the edges of the boxes has
to be checked.

The only thing to understand is that if, for
example, rectangle A´s bottom edge is above
rectangle B´s top edge, then we know there is
no collision occurring. So by doing this check
for all four sides, it is easy to know when an
intersection between A and B is happening. If
any of these four conditions are true, there is
no intersection happening.

• A´s bottom edge is higher then B´s top
edge

• A´s top edge is lower then B´s bottom
edge

• A´s left edge is to the right of B´s right
edge

• A´s right edge is to the left of B´s left edge

It also means that if none of these conditions
are true, then an intersection is happening.

The next thing to check for is: "From which
direction did it come?". This can be done by a
simple check, "which edge is closest to which
edge?". The green lines in fig: 3.1 indicate that
the red box came from the upper right corner.
By comparing the length of these two green

lines it is possible to know that the rectangle
came from above. See fig: 3.1.

Figure 3.1: An intersection between two rect-
angles.

When this is known, the red rectangle gets
moved in positive y-axis the length of the
shortest green line + an arbitrary value.

3.2 LIGHT

The implemented model is the Blinn-Phong
shading model.

The method used is a mix between pixel shad-
ing and Blinn-Phong-shading. This is not pure
Blinn-Phong-shading, because without calcu-
lating new normals accordingly to the Phong-
shading method, it is called pixel shading.

The calculations are happening in the frag-
ment shader, which means, for every pixel.
This is also the reason why it is not calcu-
lated for the 2D planes. It takes a lot of extra
power when the resolution is high. The planes
receives the colour that the texture contains
without any shading.

Because of using the fragment shader the pixel
values gets interpolated between the vertices

5

in the triangle polygon, see fig 3.2.

Figure 3.2: Pixel shading.

3.2.1 BLINN-PHONG SHADING MODEL

The model consists of 3 terms. The ambient ,
diffuse and specular light.

The ambient term is just an arbitrarily cho-
sen value added to all objects so they wont be
totally dark.

The diffuse term is the core of the model. This
value will tell us how much the pixel should
be lightened up. The diffuse value is being
calculated by taking the dot-product between
the vertex normal and the light direction. See
Eq: 3.1.

Di f f use = Nor mal ·Li g htDi r (3.1)

For a visual example see fig: 3.3 where the
small black box is a point light source.

Figure 3.3: Diffuse term.

The specular term is being calculated by first
creating a halfvector according to Eq: 3.2.

LighDir and ViewDir are both normalized.

H vector = Nor mal i ze(Li g hDi r+V i ewDi r)
(3.2)

The dot-product between the halfvector and
the normal is then being squared to the power
of an exponent. The exponent α determines
how the specular term affects the model. See
Eq: 3.3.

Specul ar = (H al f vector ·Li g htDi r)α

(3.3)

For a visual example see fig: 2.3 and examine
fig 3.4. Notice in which direction the vectors
are pointing.

Figure 3.4: Vectors for calculating Phong and
Blinn–Phong shading [4].

To get the specular light right when rotating
the object, the normals have to be multiplied
by the transposed inverse of the modelView-
Matrix.

For a more detailed explanation and code ex-
ample, visit [4].

3.3 SHADOW-MAPPING

Primarily a depth-buffer-texture is being ren-
dered via an FBO(Frame Buffer Object) from
the light source point of view. This type of tex-
ture contains a value in each pixel which says

6

how far away from the point of rendering the
objects are. It is a grayscale image, see fig: 3.5.
This is the scene from the same time-step as
3.6.

Figure 3.5: The depth texture rendered from
the light source, looking down.

Figure 3.6: The game-view rendered at the
same time as 3.5.

The pixels in fig: 3.7 that are behind the obsta-
cles will be shadowed since they have a larger
depth-value than the obstacle in the depth tex-
ture. So what needs to be done is that when
rendering the scene from the game-view, ev-
ery pixel has to be transformed from the view
in fig. 3.6 to the view in fig: 3.5 and checked
by its depth-value, the transformed vertex z-
coordinate in our case.

Figure 3.7: The basics of shadow mapping.

The vertex is first transformed by the light
source projection matrix then the light source
view matrix and finally by the modelview ma-
trix. See Eq: 3.5.

VL = MP ∗MV ∗MM ∗V (3.4)

Where

• MP is the light source projection matrix.

• MV is the light source view matrix.

• MM is the modelview matrix.

• V is the vertex being transformed.

• VL is the projected vertex from the light
source.

When using this technique shadow acne, as
seen in fig: 3.8, will often appear. This is be-
cause of numerical precision. The solution to
this is adding a bias value to the z-coordinate.
This solves the shadow acne problem but cre-
ates a new one called peter panning. See fig:
3.9. The shadow gets moved away from the
object.

7

Figure 3.8: Shadow acne.

Figure 3.9: Peter panning.

To create a bias value that fits the specific cur-
vature, the value is depending on the slope.
See Eq: 3.5 for a code example. This makes
the peter panning disappear.

f loat cosT het a = Nor mal ·Li g htDi r ;

f loat bi as = 0.004∗ t an(acos(cosT het a));

bi as = cl amp(bi as,0,1.0);

(3.5)

To avoid aliasing, soft shadows are created
with a method called Poisson sampling. It is
basically a standard sampling of the neigh-
bouring pixels from the depth texture. See fig:
3.10. The Poisson values are used to create a
kind of randomness when sampling the pixels
around the current pixel.

The poisson values were obtained from the
source-code at [6].

Figure 3.10: Poisson sampling.

Figure 3.11: Final reuslt with shadows.

For a detailed explanation visit [6] and [5].

8

4 RESULT

The following is a series of pictures which
shows the development of the engine.

Figure 4.1: Week 1: Just being able to move a
cube around.

Figure 4.2: Week 2: Going to 3D and adding
pixel shading.

Figure 4.3: Week 3: Adding bounding boxes
and distance depending light.

Figure 4.4: Week 4: Adding perspective matrix
and specular light.

Figure 4.5: Week 5: Adding shadows.

9

Figure 4.6: Week 6: Adding object loader.

Figure 4.7: Week 7: Improved shadows.

Figure 4.8: Week 8: Added textures.

Figure 4.9: Week 9: Added hovering islands
and texture to all objects.

4.0.1 COMPUTER SPECS

These test were run on this machine:

Processor: Intel Core i7 3610QM 2,3 GHz
Memory : 8 GB of DDR3 1600 MHz SDRAM
Graphics card: Intel(R) HD Graphics 4000 that
has a graphics memory of 1792 MB
OS: Windows 8 64-bit

4.0.2 PERFORMANCE MEASUREMENTS

Table 4.1: Performance results in resolution
and FPS

Resolution FPS

1280 * 720 66
1920 * 1080 62
3000 * 3000 20

10

5 DISCUSSION

To summarize this project the theory have
been consistent with what had to be done, but
this does not mean that it was easy to imple-
ment. This is because of many reasons. It
was the first time I really implemented some-
thing big in WebGL and I had to find and pro-
gramme everything by myself. I could never
really ask someone about anything technical
so I had to look it up by myself.

The thing put most time into, probably, was
the shadow mapping. It was really tricky to get
get the desired result. I tried a lot of different
methods and had to adept them to my likings.
It was hard not to get any shadow acne and
at the same time not get any peter panning.
I also tried different number of Poisson sam-
ples and culling the front faces when creating
the depth texture. But in the end I decided
that these methods was not working out well
enough.

In the shadow calculations I also tried to use
the distance between the light source and
pixel to get a better estimation. But when us-
ing this value it did not work out well at all, so
the pixel z-value was used in the end anyway.

By using Kanbanize i could still have a pretty
good overview of what had to be done and
how to prioritize. To decide what had to be
done next was still hard since I have no real
experience of creating a game engine from
before.

During the development a constant thinking
about good and efficient solutions existed. In
a game everything is happening in real time
so it has to be very efficient code. Lots of times
code had to be re-written and solutions had
to be done differently to avoid lag. What it
really is about is cheating as much as possible
without anyone noticing it.

Sound was actually implemented partially. It
wont be in the released version though until
it works perfectly. This would make the expe-
rience better if, for example, a sound played
every time the player jumped.

This has been a really rewarding project and
has given insight into many different parts
of computer graphics and graphical game re-
lated solutions.

REFERENCES

[1] Matrix library, https://code.google.
com/p/glmatrix/wiki/Usage.

[2] Matrix library, http://kanbanize.com/.

[3] Information and example of imple-
menting bounding boxes. http:
//devmag.org.za/2009/04/13/
basic-collision-detection-in-2d-part-1/.

[4] Information and example of imple-
menting Blinn-Phong shading. http:
//en.wikipedia.org/wiki/Blinn%E2%
80%93Phong_shading_model.

[5] A tutorial on how to cre-
ate shadow mapping, http:
//devmaster.net/posts/3002/
shader-effects-shadow-mapping.

[6] Another tutorial on how to
create shadow mapping http:
//www.opengl-tutorial.org/
intermediate-tutorials/
tutorial-16-shadow-mapping/
#Shadow_acne

[7] Information about the .obj-format,
https://en.wikipedia.org/wiki/
Wavefront_.obj_file.

[8] Parallax scrolling, http://en.
wikipedia.org/wiki/Parallax_
scrolling.

11

https://code.google.com/p/glmatrix/wiki/Usage
https://code.google.com/p/glmatrix/wiki/Usage
http://kanbanize.com/
http://devmag.org.za/2009/04/13/basic-collision-detection-in-2d-part-1/
http://devmag.org.za/2009/04/13/basic-collision-detection-in-2d-part-1/
http://devmag.org.za/2009/04/13/basic-collision-detection-in-2d-part-1/
http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
http://devmaster.net/posts/3002/shader-effects-shadow-mapping
http://devmaster.net/posts/3002/shader-effects-shadow-mapping
http://devmaster.net/posts/3002/shader-effects-shadow-mapping
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/#Shadow_acne
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/#Shadow_acne
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/#Shadow_acne
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/#Shadow_acne
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/#Shadow_acne
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://en.wikipedia.org/wiki/Parallax_scrolling
http://en.wikipedia.org/wiki/Parallax_scrolling
http://en.wikipedia.org/wiki/Parallax_scrolling

[9] UV mapping, http://en.wikipedia.
org/wiki/UV_mapping.

[10] Github, a version control system de-
signed to handle projects online. https:
//github.com/.

[11] Bitbucket, a version control system de-
signed to handle projects online. https:
//bitbucket.org.

12

http://en.wikipedia.org/wiki/UV_mapping
http://en.wikipedia.org/wiki/UV_mapping
https://github.com/
https://github.com/
https://bitbucket.org
https://bitbucket.org

	Introduction
	Structure of the report

	Method
	Getting started
	A quick look at how the engine is built up
	Game control and physics
	Collision detection
	Light
	perspective, FOV and aspect-ratio
	Shadow mapping
	object files reader
	Textures
	Parallax scrolling

	Detailed description
	Collision detection
	Light
	Blinn-Phong shading model

	Shadow-mapping

	Result
	Computer specs
	Performance measurements

	Discussion

