
LINKÖPINGS UNIVERSITET

Report TNCG14 - Advanced Computer Graphics

Anders Nord - andno922@student.liu.se

June 8, 2013

1 INTRODUCTION

When a DJ is playing there is almost always a
visual show going on around the stage. This
can be done in a million ways and is often pre-
made or created by a separate person called a
Vjay. The Vjay is doing the visual show live to
the beat and feel of the music. A visual show
can contain lights in different colors, blink-
ing lights(strobe), projections of basically any-
thing from static pictures switching, movie-
clips being played in pace to the music or com-
puter made graphics.

The goal with the project was to create a pro-
gram for Djs that lets them be able to man-
age this show simultaneously to DJaying. The
main idea is that the person DJaying shall be
able to interact with the visual show whenever
it is desired, and when it is not, it should act
on its own based on conditions set earlier by
the DJay.

To fully understand the content in this report,
a basic understanding of audio-analysis and
OpenGL with the use of shaders is preferred.

2 METHOD

This project has been implemented in pro-
gramming language C/C++. API´s and librarys
that has been used are the audio library BASS1,
the math library glm2 and OpenGL combined
with GLSL. The API GLFW3 was used for easy
access to create an OpenGL window and a few
other things.

First there will be a light description and expla-
nation of what was done. Then a more specific
explanation of how the visualization was done
will be presented.

In theory what needs to be done:

1. Stream data from a musicfile

2. Transform the data into the frequency do-
main

3. Use the frequency-analysis to connect
variables to different frequencies.

1http://www.un4seen.com/
2http://glm.g-truc.net/
3http://www.glfw.org/

1



4. Visualize this data in real-time

5. Crate interactivity for the user

What was done:

2.0.1 STREAM DATA FROM A MUSICFILE

What is needed here is realtime datasamples
from a live stream of music. To achive this
the BASS-library was used. BASS library is C++
compatible and gives access to a live audio
stream. The BASS library can get the sample
data from the audiostream.

2.0.2 TRANSFORM THE DATA INTO THE

FREQUENCY DOMAIN

To be able to make any good use of this data,
it needs to be transformed into the frequency
domain. This can be managed by using the
Fast Fourier Transform. The BASS library gives
you the possibility to choose if you want the
data to be transformed by an FFT and at the
same time, if desired, apply a Hann window
to the sample data to reduce leakage. The
most accurate FFT in BASS-library returns
8192 transformed samples.

2.0.3 CONNECT VARIABLES TO DIFFERENT

FREQUENCIES

To connect different variables to a correct in-
terval of frequencies, the sample-rate must
be known. The sample-rate is used to cal-
culate the corresponding frequency from a
8192 sample-intreval that is obtained from
the BASS FFT. The desirable thing would
be to connect something to the three main-
frequency-intervals. This is something that
gives the visual show a continuity.

2.0.4 VISUALIZE THIS DATA IN REAL-TIME

Since the data needs to be processed in real
time and synced with the music, the natural
choice is to use the GPU to draw the visuals.
OpenGL gives low-level access to the graph-
ics card and to get direct access to the GPU,
shaders with GLSL is used.

2.0.5 CREATE INTERACTIVITY FOR THE USER

To give the user an interactive experience
there is a lot of things one can do. Turn
booleans on and off, increase and decrease
values and create different layers with shaders.
By combining these things a lot of different
effects can be achieved.

2.0.6 A MORE TECHNICAL WALK THROUGH OF

THE VISUALIZATION-PROCESS

First the BASS FFT is performed on the CPU.
Then these samples are used to create a simple
EQ-bar as seen in figure 2.1 to see that the
data-samples are gathered correctly.

Figure 2.1: A first equalizer with bassfrequen-
cies in the middle

2



To be able to create something more
interesting, a sphere is created out of a
triangle-list attached to a VAO(Vertex Ar-
ray Object). This is done by a function
written in C-code. By doing this way, the
option how to draw this list later is pre-
sented. The different choices implemented
are GL_T RI ANGLES,GL_QU AD_ST RI P ,
GL_T RI ANGLE_F AN and GL_POI N T S.

To give an example, in figure 2.2 the
GL_T RI ANGLES are chosen while in figure
2.3, GL_T RI ANGLE_F AN is chosen.

Figure 2.2: The sphere drawn using
GL_T RI ANGLES

Figure 2.3: The sphere drawn using
GL_T RI ANGLE_F AN

This simple trick creates a rather stunning vi-
sual difference. Another good thing with this
way of creating a triangle-list is that a choice
of how many triangles that the sphere should
consist of exists. This creates different levels of
detail and can also give big visual differencies.

To optimize the performance all of the trans-
formation matrices were multiplied with each
other on the CPU with glm and sent into the
shader as one final matrix. This is because
the shader would have to recalculate all of
the transformation matrices for each vertex
or pixel.

To create a bigger variety on how the spheres
are displayed, there are three ways on how to
set the color implemented. When the sphere
is sent to the shader a choice of letting the set
color be multiplied by the normal, affected
by a light that is circling around the scene, af-
fected by both the normal and the light or just
be the set color is presented.

If the light is activated there will be pixel shad-
ing as can be seen in figure 2.3 where the light
is in the upper left corner. In figure 2.2 the
sphere is colored by both the light(above the
sphere) and the normal.

To create effects that changes the whole struc-
ture of the resulting image, three final shaders
are created. This means that one of these three
shaders will draw to the renderbuffer which
will then appear on the screen.

To be able to achieve this, an FBO (Frame
Buffer Object) is created and gets a texture
and depthbuffer attached to it. So when the
spheres are being drawn the final texture is
saved into the texture attached to the FBO in-
stead of the being sent to the screen. The final
shaders can now use this texture of everything
that has been sent to the GPU and also use the
depthbuffer.

So the three implemented final shaders are

3



a blur-shader(see figure 2.4), a depth-buffer-
shader(see figure 2.5) and a shader that just
shows the texture as it is.

Figure 2.4: The texture drawn using the blur-
shader with a high kernel-value

Figure 2.5: The texture drawn using the
depthbuffer

To make the interactivity even better the DJay
can turn on and off the different final shaders
and for exanple change the kernel value live
in the blur-shader.

Other implemented things that can be af-
fected:

• Intensity of the color - This can be de-

termined by the value of the frequency
analysis. This is the case in figure 2.3.

• Strobe - you can strobe every part indi-
vidually and the whole screen as well.

• Resolution - The resolution can be cho-
sen and needs to be equilateral (dimen-
sion * dimension)

3 RESULTS

The result of this project is a program that can
stream musicfiles in the formats MP3, MP2,
MP1, OGG, WAV and AIFF and visualize it in a
graphical form.

These are a few pictures that show the re-
sults and some different effects that can be
achieved.

Figure 3.1: The texture drawn using the blur-
shader with a low kernel value

4



Figure 3.2: The texture drawn using the blur-
shader with a high kernel value

Figure 3.3: The texture drawn using the blur-
shader with a low kernel value

Figure 3.4: The texture drawn using the depth-
buffer while also using the strobe-
function

Figure 3.5: The texture drawn using the blur-
shader, 541.5 FPS, resolution: 1024
* 1024

4 PERFORMANCE

4.0.7 COMPUTER SPECS

These test were running on this machine:

Processor: Intel Core i7 3610QM 2,3 GHz
Memory : 8 GB of DDR3 1600 MHz SDRAM
Graphics card: Intel(R) HD Graphics 4000 that
has a graphics memory of 1792 MB

4.0.8 PERFORMANCE MEASUREMENTS

Table 4.1: Performance results in FPS when
the application has every effect
turned on, blur-shader as final
shader and while strobeing

Resolution FPS

128 * 128 1380
512 * 512 1250

1024 * 1024 350
1280 * 720 400

1920 * 1080 160

5



These are the test-results when the program
is maxed out and shows the lowest FPS noted
for that particular resolution.

Any similar program has been hard to find so
a comparison has not been possible.

In the future there might be a way to paral-
lelize the FFT on the GPU for better perfor-
mance.

A limitation right now i that only equilateral
resolutions look good.

5 FUTURE WORK

For future work there are a few main things
that could be implemented:

• Read the audio stream from the main au-
dio output

• Analyze the sound and find out the song’s
BPM(Beats Per Minute). The BPM could
be used for alot of different things, es-
pecially when the visuals should create
patterns by itself

• Create a GUI/interface in a separate win-
dow for the user to more easily be able to
understand and use the program

• parallelize the FFT on the CPU to get bet-
ter speed (might be needed when the vi-
suals get more advanced)

• Combine the final shaders in different
ways. Let them blend together or other
things

• Be able to let the user activate a "picture-
mode" which will make the program
switch between hand-picked pictures to
the rythm of the song

• Be able to stop the music, change volume
and change track

6 CONCLUSION AND DISCUSSION

To summarize this project the theory were
consistent with what had to be done.

It was hard to find a good audio library that
could do what was desirable. Both in speed
and simplicity.

It is relatively easy to get the bass-frequencies
to show in the visuals but the middle and top-
frequencies are harder to distinguish. There
are many ways the frequency value can be cal-
culated. Two easy examples are either to use
the highest value in a chosen interval or calcu-
late the mean value.

It is hard to get a lot of variety in the visuals
when everything has to be built from scratch.
A good solution might have been to make
a plug-in to a 3D-program. Then the FFT-
values could have easily been connected to
the parameters in there. This would also have
given a lot of other possibilities such as render
videos to the music and so on.

A rather big limitation is that everything must
happen live in real-time. Because of this you
cannot be sloppy when choosing how to show
your visuals and you need to think twice about
how demanding they are in processing power.

The streaming of data-samples gives the posi-
tive effect that if the visuals loose frame-rate
because of demanding tasks, then they still
wont fall behind the music.

This as been a really rewarding project and
has given insight into many different parts of
audio-knowledge and graphical applications.

6


