
Smoke simulation

TN1008, Linköping University

Viktor Axelsson , vikax333@student.liu.se
Anders Nord, andno922@student.liu.se

Alexander Svensson, alesv019@student.liu.se
Amaru Ubillus, amaub859@student.liu.se

September 1, 2013

Abstract

In this paper an efficient method for simulating smoke entirely on the GPU is im-
plemented. The model is unconditionally stable and produces complex fluid-like
flows. A brief explanation of fluid simulation and the associated mathematics
are also discussed. After reading this paper, the reader should have got good
knowledge of basic fluid dynamics and how to simulate fluids using the GPU.

Contents

1 Introduction 1
1.1 Previous Work . 1
1.2 Background . 2
1.3 Structure of report . 2

2 Simulation Method 3
2.1 Mathematical Background . 3
2.2 Navier-Stokes Equations . 3
2.3 Solving the Navier-Stokes Equations 4
2.4 Advection . 5
2.5 External Forces . 6
2.6 Diffusion . 6
2.7 Projection . 6
2.8 Solution of Poisson Equations . 7

3 Implementation 9
3.1 Adaptation for GPU . 9
3.2 Implementation method . 10

3.2.1 Advection . 11
3.2.2 Diffusion . 11
3.2.3 Projection . 12
3.2.4 External forces . 14
3.2.5 Final smoke . 15

4 Results 16
4.1 Speed . 16
4.2 Visual appeal . 16
4.3 Offline rendering . 17

5 Discussion 18

6 Future work 19
6.1 Vorticity confinement . 19
6.2 3D implementation . 19

1

6.3 Dynamic ray marching . 19
6.4 Kolmogorov spectrum . 20

A Shader code 23

Chapter 1

Introduction

Fluid simulation is nowadays daily used in the special effect industry and is a
popular tool in computer graphics for generating realistic animations of water,
smoke, explosions, and related phenomena.

This report explains a method to simulate smoke on the GPU1. Because of
the large amount of parallelism in graphics hardware, the simulation runs much
faster on the GPU than on the CPU2.

1.1 Previous Work

The Navier-Stokes equations are a set of equations for describing fluids in mo-
tion. Dynamical models of fluid based on the Navier-Stokes equations were
first implemented in two dimensions by Yaeger and Upson 1986 [4]. Foster and
Metaxas 1996 [5] and 1997 [6] did some work in three-dimensional Navier Stokes
equation to create fluidlike animations. Their model has the advantage of being
simple to code, since it is based on a finite differencing of the Navier-Stokes
equations and an explicit time solver. Explicit solvers calculate the state of the
fluid at a later time from the state at the curent time, while implicit solvers
find a solution by solving equation involving both the current state of the fluid
and the later one. The main problem with explicit solvers is that the numerical
scheme can become unstable for large time-steps.

Stam 1999 [8] proposed an unconditionally stable algorithm that solves the
full Navier-Stokes equations. The method uses both Langrangian and implicit
methods to solve the Navier-Stokes equations, instead of an explicit Eulerian
scheme to obtain a stable solver. This allows the user to simulate fluids on
larger grids in real-time since the time steps can be much larger.

1Graphics Processing Unit
2Central Processing Unit

1

1.2 Background

Previous methods such as Foster and Metaxas 1997 [6]; Stam 1999 [8] and
Fedkiw et al.2001 [2], can produce near real time results on small grids. On
larger grids these methods are ineffective and they require a lot of memory just
to store the density and velocity fields.

The method described in this report was originally supposed to be a GPU
implementation of the paper ”Smoke Simulation For Large Scale Phenomena”
by Rasmussen et al.2003 [7]. But the work ended up as a combination between
that paper and two others.

The paper ”stable fluid” by Stam 1999 was used to achive a stable solver. But
while Stam’s simulations used a CPU implementation, the simulation method
described in the following sections is implemented on the GPU. The article ”Fast
Fluid Dynamics Simulation on the GPU” by Mark Harris, 2004 [3] describes how
to implement the method of Stam on the GPU.

By implementing the Navier-Stokes equations on the GPU higher perfor-
mance can be achieved through its greater parallel processing power.

1.3 Structure of report

In chapter 2 the simulation method is discussed, this will cover all the back-
ground information needed to understand the Navier-Stokes equations and the
matematical background to fluid simulation.

In chapter 3 more specific information related to the implementation is dis-
cussed and in chapter 4 the performance of the implemented algorithm will be
presented and analysed.

In chapter 5 the result will be discussed and finally in chapter 6 a conclusion
can be drawn of the work presented.

2

Chapter 2

Simulation Method

2.1 Mathematical Background

A mathematical representation of the state of the fluid is needed in order to
simulate the behaviour of a fluid. The most important quantity needed to
represent a fluid is the velocity, which determines how a fluid moves along itself
and the things inside it. A fluid can be represented by a vector field and varies
in both time and space. For this report we assume a two-dimensional Cartesian
grid where the velocity vector field of our fluid is defined.

The key to fluid simulation is to take steps in time and, at each time step,
correctly determine the current velocity field. This can be done by solving the
Navier-Stokes equations.

2.2 Navier-Stokes Equations

The famous Navier-Stokes equations describe how a fluid flow changes over time.
The flow is described by V, a vector field. In the Navier-Stokes equations this
vector field denotes the velocity of the fluid at every point in space and thus V
is referred to as the velocity field of the fluid. The equations for incompressible
flow can be written as:

δV

δt
= −(V · ∇)V− ∇p

p
+ v∇2V + F (2.1)

∇ ·V = 0 (2.2)

The Navier-Stokes equations may initially look complex, but to understand
them better it is possible to break them into more simple pieces.

3

• (V · ∇)V is called the self-advection term and is responsible for ”moving
the flow with itself”. The velocity of a fluid causes the fluid to trans-
port objects densities along with the flow. This non-linear term is very
important for the behaviour of swirls and vortices.

• ∇p
p is the pressure field p. When a force is applied to a fluid, it does not

instantly propagate through the entire volume. Instead, the particles close
to the force push on those farther away, and pressure builds up. Pressure
is force per unit area and any pressure in the fluid naturally leads to
acceleration.

• v∇2V is the diffusion term which correspond to the fluids internal friction.
It controls the thickness of the fluid. Viscosity is a measure of how resistive
a fluid is to flow. Tick fluids like honey have high viscosity and flow slowly.
Thin fluids like alkohol, flow quickly and have low viscosity.

• F, is the external force term. It applies forces at the fluid such as gravity
wind and buoyancy. The forces can be either local forces or body forces.
Local forces are applied to specific regions of the fluids while body forces
affect the entire fluid.

• ∇ ·V = 0 is an additional constraint that enforces a divergence free solu-
tion. This means that the volume of the fluid must remain constant over
time.

The terms in the Navier-Stokes equation contain three different uses of the
symbol ∇, which is known as the nabla operator. The three applications of
nabla are the gradient ∇, the divergence ∇·, and the Laplacian operators ∇2.

2.3 Solving the Navier-Stokes Equations

The Navier-Stokes equations cannot be solved analytically but it is possible
to solve them with numerical integration techniques. A first step would be to
transform the equations into a form that is more close to numerical solution and
divide the solution of the Navier-Stokes into simple steps.

By using a technique known as operator splitting the Navier-Stokes equations
can be solwed in parts. Given an initial vector field V0 at some point in time t0
the new vector field V∆t is calculated by solving a series of subproblems. The
terms in equation 2.1 can be arranged as in figure 2.1 to solve the problem:

Figure 2.1: Operator splitting.

1. The temporary field V1 is calculated from V0 by solving for the advection
term, (V · ∇)V.

4

2. Then V2 can be calculated from V1 by adding an external force, F.

3. The vector field V3 can be calculated from V2 by solving for the diffusion
term, v∇2V.

4. Finally the new vector field V∆t can be calculated from V3 by projecting
the velocity field onto it divergence free parts, this includes the terms, ∇p

p
and ∇ ·V = 0.

2.4 Advection

Advection is the process by which a fluids velocity transports itself and other
quantities in the fluid. To compute how a quantity moves along the velocity
filed it is possible to imagine that each grid cell is represented by a particle.
The grid may then be updated in the same way as a particle system by using
Eulers method for explicit (forward) integration to move each particle forward
along the velocity field.

The problem with this method is that using explicit methods for advection
will unfortunately result in a solver that easily becomes unstable for large time
steps.

The solution is to use the implicit method described by Stam 1999 [8]. In
order to calculate the new temporary velocity field V1 from V0 we need to solve
the following eqution:

δV1

δt
= −(V0 · ∇)V0 (2.3)

These equations can be solved by the method of characterestics.
Instead of computing where a particle moves over the current time step, the

particle is traced from each grid cell back in time to its previous position. Given
a point x, the point x is backtraced through the velocity field V0 over a time
∆t. The new velocity at the point x is then set to the velocity the particle, now
at x, had at its previous location a time ∆t ago:

V1(x) = V0(p(x,−∆t)) (2.4)

As can be seen in figure 2.2 by tracing the velocity field back in time leads
to the green x which are bilineary interpolated, and the result is copied to the
starting grid cell.

5

Figure 2.2: Computing fluid advection.

2.5 External Forces

To solve the external force term, the force-field F is simply defined and V2 can
be created from V1 by using Euler integration:

V2 = V1 + ∆t · F (2.5)

2.6 Diffusion

Viscous fluids have a certain resistance to flow, which results in diffusion of
velocity. A partial differential equation for viscous diffusion is:

δV2

δt
= v∇2V2. (2.6)

Again the stable method by Stam [8] is used, and an implicit formulation of
equation 2.6 can be written as:

(I− vδt∇2)V3(x, t+ δt) = V2(x, t) (2.7)

Where I is the identity matrix. This equation is a Poisson equation for velocity
and can be solved using an iterative technique, see section 2.8.

2.7 Projection

The final step in the Navier-Stokes solver algorithm is to enforce incompressibil-
ity. Solving the Navier-Stokes equations involves three computations to update
the velocity at each time step: advection, force application and diffusion. The

6

result is a new velocity field, V3, with nonzero divergence. But equation 2.2
requires that each time step end with a divergence free velocity.

The Helmholtz-Hodge decomposition states that it is always possible to split
a vector field into a divergence free part and a curl free part:

V3 = Vdf + Vcf (2.8)

The final divergence free vector field V∆t can be identified as Vdf . A gradient
field is always curl free and can therfore be constructed as the gradient of some
scalar field p:

V3 = V∆t +∇p (2.9)

The divergence of the velocity can then be corrected by rearrange equation 2.9
and subtract the gradient of the resulting pressure filed.

V∆t = V3 −∇p (2.10)

To compute and find the value of the pressure field p the divergence operator is
applied to both sides of Equation 2.9

∇ ·V3 = ∇ · (V∆t +∇p) = ∇ ·V∆t +∇2p (2.11)

And since equation 2.2 say that ∇ · V = 0 the equation can be simplified to:

∇2p = ∇ ·V3 (2.12)

Which is a Poisson equation for the pressure of the fluid. Since V3 is known
this allows us to find the p that fulfills the Helmholtz-hodge decomposition,
equation 2.9. The new divergence-free field V∆t is now possible to compute
from equation 2.10.

2.8 Solution of Poisson Equations

Equation 2.12 and equation 2.7 belong to a class of equations called Poisson
equations. In this report an iterative solution technique is used to solve the
Poisson equations.

The Poisson equation is a matrix equation in the form Ax = b, where x is the
vector of values for which we are solving (V), b is a vector of constant, and A is
a matrix. A is implicitly represented in the Laplacian operator ∇2 and does not
need to be explicitly stored as a matrix. The iterative solution technique used is
one of the simplest and is called Jacobi iteration. More complex method such as
conjugate gradient and multigrid methods are better and converge faster. But
Jacobi iteration has the advantage of being simple and easy to implement.

The technique starts with an initial guess x(0) and for each step k an im-
proved solution is calculated. Equation 2.12 and equation 2.7 may look different
but both can be discretized and rewritten in the form:

xk+1
i,j =

x
(k)
i−1,j + x

(k)
i+1,j + x

(k)
i,j−1 + x

(k)
i,j+1 + αbi,j

β
(2.13)

7

In this equation the values α and b are constants and the values of x, β, a and
b are different depending to which equation they belong.

In the Poisson-pressure equation 2.12 x represents p, β represents ∇ · w, a
= −(dx)2 and b = 4.

For the viscous diffusion equation 2.7, both x and β represent V , a =
(dx)2/ndt, and b = 4 + a.

To solve the equations a number of iterations are run and equation 2.13 is
applied at every grid cell. The result from the previous iteration is used as
input to the next and since Jacobi iteration converges slowly many iterations is
needed to achieve a good result.

8

Chapter 3

Implementation

In order to decrease the amount of computations when rendering a volume, the
method describes dividing the volume into slices. The slices are described as
either stacked or rotated about a center axis (figure 3.5).

The idea is to obtain an implicit 3D-volume by interpolation of the slices.

3.1 Adaptation for GPU

When a shader is run, it is unaware of the result of its last execution. The
Navier-Stokes equations, however, require values from previous time steps.

To solve this problem, the 2D data fields for every slice are saved in textures.
The shaders are set up to read from an array of previous textures and will render
to a corresponding array of current textures.

It is the usage of framebuffer objects in OpenGL that enables this rendering
to off-screen textures.

1. For each slice in every time step:

(a) Render each field to a texture, using previous textures as input.

(b) Copy the current textures to previous textures for the next time step.

2. Render smoke to the screen using the density texture.

(a) Stacked (b) Circular

Figure 3.1: Slice constellations

9

3.2 Implementation method

When implementing a Navier-stokes-fluid on the GPU there is no need for cre-
ating a grid. The pixels in the texture will be used as grid-cells. Each cell(pixel)
in a texture can contain 4 values. For a picture this would be r, g, b and a,
which can be compared to a vector containing 4 values.

The velocity-texture for example contains vectors in each cell that tells us
the velocity in the x and y-axis. See figure 3.2.

Figure 3.2: The Velocity Grid represented by vectors [1]

These are the shaders currently implemented, in the order they are executed:

1. Advection

2. Diffusion

3. Projection (3 shaders)

Divergence

Jacobi iteration (Calculates the pressure field)

Gradient

These are the textures currently implemented:

• Velocity

• Density

• Divergence

• Pressure

10

3.2.1 Advection

The first shader in the pipeline is the advection shader. The values in the
density-texture are advected according to section 2.4 by the velocity field.

The velocity field is also advecting itself after it has advected the density.
This is called self-advection.

As written in section 2.4 the interpolation is bilinear. This can be set when
creating the texture and is handled automatically by the GPU.

The implementation of the advection shader is shown in listing 3.1

1
2 −−−−−−Advection Shader Program−−−−−−
3
4 //Take a step back to prev ious coord inate
5
6 vec2 prevCoordD = vec2 (st − (coordVelocity . xy ∗ dt)) ;
7
8 vec3 prevCoordDensity = texture2D (fPrev , prevCoordD . xy) . xyz ;
9

10 fField = prevCoordDensity ;
11
12 //Take a step back to prev ious coord inate in the v e l o c i t y f i e l d
13
14 vec2 prevCoordV = vec2 (st − (coordVelocity . xy ∗ dt)) ;
15
16 //To make the v e l o c i t y f i e l d move along i t s e l f
17 // (s e l f a d v e c t i o n)
18
19 vec3 prevCoordVelocity = texture2D (vPrev , prevCoordV . xy) . xyz ;
20
21 xyz = vec3 (prevCoordVelocity . x , prevCoordVelocity . y + buoyancy←↩

,
22 prevCoordVelocity . z) ;

Listing 3.1: A part of the advection program

In this code v represent the velocity field texture and f represent the density
field texture. xyz is the field that is to be advected.

3.2.2 Diffusion

The second shader will determine how viscous the fluid is. This is done with
Jacobi iterations. The accuracy is enhanced with every iteration of the shader.
A good value would be 40 iterations. Less iterations was tested but the results
was not as good. The Jacobi Iteration program is shown in listning 3.2

11

1 −−−−−−Jacobi Iteration Program−−−−−−
2
3 f l o a t viscosity = 0.000000000000000001; // Arb i t rary number
4
5 // l e f t , r i ght , bottom , and top samples
6 vec3 coordVelL = texture2D (vPrev , vec2 ((st . x − pixdist) , st . y))←↩

. xyz ;
7 vec3 coordVelR = texture2D (vPrev , vec2 ((st . x + pixdist) , st . y))←↩

. xyz ;
8 vec3 coordVelB = texture2D (vPrev , vec2 (st . x , (st . y − pixdist)))←↩

. xyz ;
9 vec3 coordVelT = texture2D (vPrev , vec2 (st . x , (st . y + pixdist)))←↩

. xyz ;
10
11 // Constants
12 f l o a t alpha = pow (pixdist , 2 . 0) / (viscosity ∗ dt) ;
13 f l o a t beta = 4.0 + alpha ;
14
15 vec3 b = texture2D (vPrev , st . xy) . xyz ;
16
17 // Estimate Jacobi i t e r a t i o n
18 vec3 coordDiffuseVelocity = (coordVelL + coordVelR + coordVelB + ←↩

coordVelT + (alpha ∗ b)) / beta ;

Listing 3.2: Jacobi iteration program

The value of the viscosity variable was arbitrarily chosen by testing different
values to look like smoke from a candle. The constants alpha and beta are
taken from section 2.8, used to solve the viscous diffusion equation 2.7.

3.2.3 Projection

The projection step is divided into three steps, hence three shaders.

3.2.3.1 Divergence shader

In the divergence-shader a divergence field is calculated from the velocity field,
and saved to the divergence-texture.

(a) Timestep 1 (b) Timestep 2

Figure 3.3: Visualization of the divergence of the vector field

The black parts in figure 3.3 are sinks which will attract the smoke. The white
positive divergence represents places the smoke is moving away from. The di-
vergence shader program is shown in listning 3.3

12

1 −−−−−−The Divergence Fragment Program−−−−−−
2
3 // l e f t , r i ght , bottom , and top samples
4 vec3 coordVelocityLeft = texture2D (vPrev , vec2 ((st . x − pixdist) ,
5 st . y)) . xyz ;
6 vec3 coordVelocityRight = texture2D (vPrev , vec2 ((st . x + pixdist) ,
7 st . y)) . xyz ;
8 vec3 coordVelocityBottom = texture2D (vPrev , vec2 (st . x , (st . y −
9 pixdist))) . xyz ;

10 vec3 coordVelocityTop = texture2D (vPrev , vec2 (st . x , (st . y +
11 pixdist))) . xyz ;
12
13 f l o a t temp = 0.5 / pixdist ;
14
15 // c a l c u l a t e d ive rgence
16 vec3 divergence = temp ∗ vec3 ((coordVelocityRight . x − ←↩

coordVelocityLeft . x) +
17 (coordVelocityTop . y − coordVelocityBottom . y)) ;

Listing 3.3: The divergence program

The divergence is written to the divergence texture and is later used as input to
the b parameter of the Jacobi iteration program for poisson pressure equation
2.12.

3.2.3.2 Pressure shader

The pressure shader will create a new pressure field every loop of the shaders.
This is possible by using the divergency field in a Jacobi iteration. At the same
time the pressure shader itself is being iterated many times. After the first
iteration the pressure field will not be especially good. Let it iterate about 80
times, and it will be a fairly good estimation.

(a) Timestep 1 (b) Timestep 2

Figure 3.4: Visualization of the pressure in the vector field

The black parts in figure 3.4 symbolizes high pressure. The smoke is pushing
upwards and creates a higher pressure in this area. Compare 3.4 with the
divergence field in figure 3.3 and notice how they compliment eachother.

The jacobi iteration program for pressure is the same as for viscous diffusion
apart from different constants and can be found in the apendix A.

13

3.2.3.3 Gradient shader

The shader calculates the gradient of the pressure field at a specific coordinate
and then subtracts it from the velocity field. This means that the Navier-Stokes
equations have been solved. The updated veolcity field will be used in the next
shader-loop and advection.

(a) Timestep 1 (b) Timestep 2

Figure 3.5: Visualization of the velocity in the vector field

The pink parts in figure3.5 represent a velocity in the positive y-axis. The blue
parts represent a positive force in the x-axis. And the purple parts are a mix of
these two. The gradient subtraction program can be seen in listning 3.4.

1 −−−−−−The Gradient Subtraction Program−−−−−−
2
3 // l e f t , r i ght , bottom , and top samples
4 vec3 coordPreassureLeft = texture2D (pPrev , vec2 ((st . x − pixdist) ,
5 st . y)) . xyz ;
6 vec3 coordPreassureRight = texture2D (pPrev , vec2 ((st . x + pixdist) ,
7 st . y)) . xyz ;
8 vec3 coordPreassureBottom = texture2D (pPrev , vec2 (st . x , (st . y −
9 pixdist))) . xyz ;

10 vec3 coordPreassureTop = texture2D (pPrev , vec2 (st . x , (st . y +
11 pixdist))) . xyz ;
12
13 pixdist = 0.5 / pixdist ;
14
15 // Subtract g rad i ent .
16 vField −= vec3 (pixdist ∗ (coordPreassureRight . x − coordPreassureLeft←↩

. x) , pixdist ∗ (coordPreassureTop . y − coordPreassureBottom . y) , ←↩
vField . z) ;

Listing 3.4: The gradient subtraction program

3.2.4 External forces

The only external forces implemented are buoyancy and a Gaussian splat force-
source.

A Gaussian splat is basically a force-source, like the wind, which has a
dircetion and a magnitude. This force is then added to the velocity-field. See
[3] for formula.

14

These are both calculated in the advection shader, before the actual advec-
tion. So if it would have been a separate shader, it would have been placed
before the advection-shader.

3.2.5 Final smoke

(a) Timestep 1 (b) Timestep 2

Figure 3.6: Final smoke

The final result can be seen in fig 3.6. A summary can be seen in fig 3.7.

(a) Divergence field (b) Pressure field

(c) Velocity field (d) Final smoke

Figure 3.7: A summary of the different vector fields creating the final smoke

15

Chapter 4

Results

4.1 Speed

One of the benefits of utilizing the GPU is the speed gain compared to a similar
execution on the CPU.

Table 4.1: Render speed

Resolution Number of slices FPS
128x128 3 5.0
256x256 3 1.2
512x512 3 0.3

1024x1024 3 0.1

512x512 1 0.9
512x512 2 0.5
512x512 3 0.3
512x512 4 0.2
512x512 5 0.2

Table 4.1 shows performance with different resolutions and number of slices.
The test was made with 40 diffuse and 80 pressure iterations per frame.

4.2 Visual appeal

A snapshot of the simulation is shown in figure 4.1. Our results are quite a long
way off the renderings in ”Smoke Simulation For Large Scale Phenomena”. This
of course due to first and foremost being two-dimensional and not as much work
having been put into colouring and fall-off gradients. Being three-dimensional
also allows for ray-tracing of light which adds a lot of visual appeal. When

16

compared to other two-dimensional simulations however our results measure up
quite well, see figure 4.1.

(a) Our simulation (b) Stable Fluids Jos Stam [8]. [10]

(c) GPU Gems I. Ch.38 [9]. [11] (d) Master thesis work [12]

Figure 4.1: A comparison between our results and similiar projects based on
different methods.

4.3 Offline rendering

When using large textures and/or several slices, the FPS dropped significantly
so a function to save the frames to PNG files was implemented, and these images
were concatenated into a movie.

17

Chapter 5

Discussion

We made a working two-dimensional smoke simulation, three-dimensionality
was unfortunately not fully achieved. The layer-based method used in ”Smoke
Simulation For Large Scale Phenomena” by Rasmussen et al.2003 [7] caused
issues by not being very well documented. So while a fluid could be simulated
simultaneously on several layers there is no interaction between them in the
form of, for example, advection and diffusion. It might have been easier to use a
three-dimensional texture and calculate the fluid as a volume but the described
layer method had large performance benefits.

While the mathematical concepts are quite advanced and hard to grasp the
actual implementation were often suprisingly simple. An example is the Jacobi
iterator which solves the constant pressure equations. Its approximation which
converges on an acceptable value replaces the theoretical solution which includes
solving a matrix equation for a matrix the size of n2 × n2 where n is the size
of the fluid grid. A grid of 512× 512 would for example require the solving of
Ax = b where A would be a matrix with 236 ≈ 6.8 ∗ 1010 elements.

18

Chapter 6

Future work

6.1 Vorticity confinement

Vorticity confinement is a method for maintaining small swhirl-like motions in
low-viscosity fluids that often dissapear due to grid cells being too large to
accomodate these small rotational movements. Mathematically it is not a very
advanced step in the process to implement and would most likely improve the
quality of the smoke simulation.

6.2 3D implementation

To use the method with multiple slices instead of a continuous third dimension
of the data as described in ”Smoke Simulation For Large Scale Phenomena” by
Rasmussen et al. 2003 [7] would take further research into how the implemen-
tation is done with respect to transferral of values between the layers. We have
set up the structure for using layers and can run simulations with several layers,
however they do not interact with each other.

6.3 Dynamic ray marching

In order to show the 3D-texture that contains the slices, a primitive ray marching
was implemented. It marches from the front of the cube to the back and returns
the largest value it encounters.

This is a special case of when looking straight at the front of the cube and
thus the 3D is a bit redundant. The ray marcher could very well be extended
to properly handle pan-tilt-zoom navigation.

19

6.4 Kolmogorov spectrum

The interpolation between the slices is currently linear, ”Smoke Simulation For
Large Scale Phenomena” by Rasmussen et al. 2003 [7] presents an added noise
to this interpolation. The noise specified in the report uses the Kolmogorov
spectrum as a means to reduce the visibility of artifacts caused by the linear
interpolation.

The Kolmogorov spectrum is poorly documented and we therefore did not
implement it and settled for linear interpolation. Future work could include re-
searching the Kolmogorov spectrum further and implement if possible or finding
other noise methods that could be applicable.

20

Bibliography

[1] Bridson, R. 2008.
Fluid Simulation for Computer Graphics
September 18, 2008 by A K Peters/CRC Press - 246 Pages

[2] Fedkiw, R., J. Stam, and H.W. Jensen. 2001.
Visual Simulation of Smoke.
In Proceedings of SIGGRAPH 2001.

[3] Harris, M. 2004
Fast Fluid Dynamics Simulation on the GPU.
http.developer.nvidia.com/GPUGems/gpugems_ch38.html

[4] L.Yaeger and C.Upson. 1986.
Combining Physical and Visual Simulation.
Creation of the Planet Jupiter for the Film 2010.
ACM Computer Graphics (SIGGRAPH 86), 20(4):85-93, August 1986.

[5] N. Foster and D. Metaxas. 1996.
Realistic Animation of Liquids.
Graphical Models and Image Processing, 58(5):471-483, 1996.

[6] N. Foster and D. Metaxas. 1997
Modeling the Motion of a Hot, Turbulent Gas.
In Computer Graphics Proceedings, Annual Conference Series, 1997, pages
181-188, August 1997.

[7] Rasmussen, N., Nguyen, D. Q., Geiger, W., and Fedkiw,R. 2003.
Smoke Simulation For Large Scale Phenomena.
In Proceedings of ACM SIGGRAPH 2003, vol. 22, 703707

[8] Stam, J. 1999.
Stable Fluids.
In Proceedings of SIGGRAPH 1999.

[9] Mark J. Harris. 2004.
GPU Gems
Pearson Education, Inc.

21

[10] http://users.csc.calpoly.edu/ zwood/teaching/csc572/final08/khaughey/
CSC 572 Final Project - GPU Smoke Simulation
Kyle Haughey

[11] http://www.youtube.com/watch?v=nK12L2TLO9g 2D Smoke using Fluid
Simulation

[12] http://www.youtube.com/watch?v=zfz9RbhXFyA 2D Smoke Simulation
Vignesh Kumar Ramalingam

22

Appendix A

Shader code

1
2 uniform i n t frame ;
3 uniform i n t winWidth ;
4 uniform i n t winHeight ;
5 uniform f l o a t depth ;
6 uniform sampler2D vPrev ;
7 uniform sampler2D vCurr ; // i s g l Fragdata [0]
8 uniform sampler2D fPrev ;
9 uniform sampler2D fCurr ; // i s g l Fragdata [1]

10 varying vec2 st ;
11 varying vec3 stp ;
12
13 f l o a t dt = 1 . 0 / 3 0 . 0 ;
14 f l o a t pixdist = 1.0/ f l o a t (winWidth) ;
15
16
17 void main (void)
18 {
19 vec3 fField = texture2D (fPrev , st) . xyz ; // Density
20 vec3 vField = texture2D (vPrev , st) . xyz ; // Ve loc i ty
21 f l o a t time = f l o a t (frame) ∗dt ;
22
23
24 vec3 xyz = vec3 (0 . 0 f , 0 . 0 f , depth) ;
25 vec3 coordVelocity = texture2D (vPrev , st) . xyz ;
26
27 // I n i t i a l va lues
28 i f (frame < 2)
29 {
30 // I n i t i a t e dens i ty
31 i f (pow (st . x − 0 .5 f , 2 . 0) + pow (st . y − 0 .5 f , 2 . 0) + pow (depth − ←↩

0 . 5 , 2 . 0) < 0 . 01)
32 {
33 fField = vec3 (0 . 0 f) ;
34 } e l s e
35 {
36 fField = vec3 (0 . 05 f) ;
37 }
38
39 // n i t i a t e v e l o c i t y f i e l d to 0
40 xyz = vec3 (0 . 0) ;
41
42 } e l s e
43 {

23

44
45 // Create the d i f f e r e n t f o r c e s −−−−−−−−−−−−−−
46 // Gaussian s p l a t (a fo r ce−source , l i k e the wind , which has a ←↩

d i r c e t i o n and a magnitud)
47 f l o a t radius_x = 0 . 3 ;
48 f l o a t radius_y = 0 . 3 ;
49 f l o a t r = 1.0 + depth ;
50 f l o a t F = abs (cos (time)) + 1 . 0 ;
51
52 f l o a t c = (exp (−((pow (st . x−radius_x , 2 . 0) + pow (st . y−radius_y , ←↩

2 . 0)) / pow (r , 2 . 0)))) ;
53 c = abs (c ∗ dt ∗ F) ;
54
55 // Gravity
56 f l o a t gravity = 9.82 ∗ dt ;
57
58
59 //buoyancy − could be a tex ture with temperature .
60 vec2 temp = texture2D (fPrev , vec2 ((st . x) , (st . y − pixdist ∗ 5 . 0)))←↩

. xy ;
61 vec2 temp2 = texture2D (fPrev , vec2 ((st . x) , (st . y + pixdist ∗ 5 . 0))←↩

) . xy ;
62 f l o a t diffval = (abs ((temp . x + temp . y) − (temp2 . x + temp2 . y))) ;
63
64 f l o a t buoyancy = 0.7 ∗ dt ∗ diffval ;
65
66 //Add the f o r c e s −−−−−−−−−−−
67
68 // Gravity
69 // coordVe loc i ty . y = coordVe loc i ty . y − g rav i ty ;
70
71 // Gaussian s p l a t
72 i f (1 > 0) // on/ o f f
73 {
74 //” fo rce−po int souce ” shoot ing away from source
75 i f ((st . x − radius_x) < 0 . 0)
76 {
77 // coordVe loc i ty . x = coordVe loc i ty . x − c ;
78 } e l s e
79 {
80 // coordVe loc i ty . x = coordVe loc i ty . x + c ;
81 }
82 i f ((st . y − radius_y) < 0 . 0)
83 {
84 coordVelocity . y = coordVelocity . y − c ;
85 } e l s e
86 {
87 coordVelocity . y = coordVelocity . y + c ;
88 }
89 }
90
91 // Advection and buoyancy −−−−−−−−−−−−
92 //Take a step back to prev ious coord inate
93 vec2 prevCoordD = vec2 (st − (coordVelocity . xy ∗ dt)) ;
94 vec3 prevCoordDensity = texture2D (fPrev , prevCoordD . xy) . xyz ;
95 fField = prevCoordDensity ;
96
97 //Take a step back to prev ious coord inate in the v e l o c i t y f i e l d
98 vec2 prevCoordV = vec2 (st − (coordVelocity . xy ∗ dt)) ;
99 //To make the v e l o c i t y f i e l d move along i t s e l f (s e l f−advect ion)

100 vec3 prevCoordVelocity = texture2D (vPrev , prevCoordV . xy) . xyz ;
101 xyz = vec3 (prevCoordVelocity . x , prevCoordVelocity . y + buoyancy , ←↩

prevCoordVelocity . z) ;
102
103 f l o a t moveY = 0 . 1 ;
104 f l o a t moveX = 0 . 5 ;
105 i f (sin (time) ∗ cos (time) > −2.0)
106 {

24

107 //The rad ius o f the dens i ty c i r c l e
108 i f ((st . x − moveX) ∗(st . x − moveX) + (st . y − moveY) ∗(st . y − ←↩

moveY) < 0 .0005)
109 {
110 // Density value . Higher value c r e a t e s i n c r ea s ed buoyancy
111 fField = vec3 (0 . 4 f) ;
112 }
113 }
114
115 }
116 //Save in fo rmat ion to the t ex tu r e s
117 gl FragData [0] = vec4 (xyz , 1 . 0) ;
118 gl FragData [1] = vec4 (fField , 1 . 0) ;
119 }

Listing A.1: Advection shader

1
2 uniform i n t frame ;
3 uniform i n t winWidth ;
4 uniform i n t winHeight ;
5 uniform sampler2D vPrev ;
6 uniform sampler2D vCurr ; // i s g l Fragdata [0]
7 uniform sampler2D fPrev ;
8 uniform sampler2D fCurr ; // i s g l Fragdata [1]
9 varying vec2 st ;

10 varying vec3 stp ;
11
12 f l o a t dt = 1 . 0 / 3 0 . 0 ;
13 f l o a t pixdist = 1.0 f /(f l o a t (winWidth)) ;
14
15 void main (void)
16 {
17 vec3 fField = texture2D (fPrev , st) . xyz ;
18 vec3 vField = texture2D (vPrev , st) . xyz ;
19
20 vec3 coordVelocity = texture2D (vPrev , st) . xyz ;
21
22 vec2 prevCoord = vec2 (st − (coordVelocity . xy ∗ dt)) ;
23
24 f l o a t viscosity = 0.000000000000000001; // Arb i t rary number
25
26 // j a c o b i i t e r a t i o n
27 vec3 coordVelL = texture2D (vPrev , vec2 ((st . x − pixdist) , st . y))←↩

. xyz ;
28 vec3 coordVelR = texture2D (vPrev , vec2 ((st . x + pixdist) , st . y))←↩

. xyz ;
29 vec3 coordVelB = texture2D (vPrev , vec2 (st . x , (st . y − pixdist)))←↩

. xyz ;
30 vec3 coordVelT = texture2D (vPrev , vec2 (st . x , (st . y + pixdist)))←↩

. xyz ;
31
32 f l o a t alpha = pow (pixdist , 2 . 0) / (viscosity ∗ dt) ;
33 f l o a t beta = 4.0 + alpha ;
34
35 vec3 b = texture2D (vPrev , st . xy) . xyz ;
36
37 vec3 coordDiffuseVelocity = (coordVelL + coordVelR + coordVelB + ←↩

coordVelT + (alpha ∗ b)) / beta ;
38
39 gl FragData [0] = vec4 (coordDiffuseVelocity , 1 . 0) ;
40 gl FragData [1] = vec4 (fField , 1 . 0) ;
41 }

Listing A.2: Diffusion shader

25

1
2 uniform i n t frame ;
3 uniform i n t winWidth ;
4 uniform i n t winHeight ;
5 uniform sampler2D vPrev ;
6 uniform sampler2D vCurr ; // i s g l Fragdata [0]
7 uniform sampler2D fPrev ;
8 uniform sampler2D fCurr ; // i s g l Fragdata [1]
9 uniform sampler2D dCurr ;

10 uniform sampler2D dPrev ; // i s g l Fragdata [2]
11 uniform sampler2D pPrev ;
12 uniform sampler2D pCurr ;
13 varying vec2 st ;
14 varying vec3 stp ;
15
16 f l o a t dt = 0.0166666666 f ;
17 f l o a t pixdist = 1.0 f/ f l o a t (winWidth) ;
18
19 void main (void)
20 {
21 vec3 vField = texture2D (vPrev , st) . xyz ;
22 vec3 fField = texture2D (fPrev , st) . xyz ;
23
24 // Ca lcu la te d ive rgence
25 vec3 coordVelocityLeft = texture2D (vPrev , vec2 ((st . x − pixdist) , ←↩

st . y)) . xyz ;
26 vec3 coordVelocityRight = texture2D (vPrev , vec2 ((st . x + pixdist) , ←↩

st . y)) . xyz ;
27 vec3 coordVelocityBottom = texture2D (vPrev , vec2 (st . x , (st . y − ←↩

pixdist))) . xyz ;
28 vec3 coordVelocityTop = texture2D (vPrev , vec2 (st . x , (st . y + ←↩

pixdist))) . xyz ;
29
30 f l o a t temp = 0.5 / pixdist ;
31 vec3 divergence = temp ∗ vec3 ((coordVelocityRight . x − ←↩

coordVelocityLeft . x) +
32 (coordVelocityTop . y − coordVelocityBottom . y)) ;
33
34
35 gl FragData [0] = vec4 (vField , 1 . 0 f) ;
36 gl FragData [1] = vec4 (fField , 1 . 0 f) ;
37 gl FragData [2] = vec4 (divergence , 1 . 0) ;
38 gl FragData [3] = vec4 (vec3 (0 . 0) , 1 . 0) ; // Set the pressure−t ex ture ←↩

to 0 be f o r e the i t e r a t i o n .
39 }

Listing A.3: Divergence shader

1 uniform i n t frame ;
2 uniform i n t winWidth ;
3 uniform i n t winHeight ;
4 uniform sampler2D vPrev ;
5 uniform sampler2D vCurr ; // i s g l Fragdata [0]
6 uniform sampler2D fPrev ;
7 uniform sampler2D fCurr ; // i s g l Fragdata [1]
8 uniform sampler2D dCurr ;
9 uniform sampler2D dPrev ; // i s g l Fragdata [2]

10 uniform sampler2D pPrev ;
11 uniform sampler2D pCurr ; // i s g l Fragdata [3]
12 varying vec2 st ;
13 varying vec3 stp ;
14
15 f l o a t dt = 1 . 0 / 3 0 . 0 ;
16 f l o a t pixdist = 1.0/ f l o a t (winWidth) ;
17

26

18
19 void main (void)
20 {
21 vec3 vField = texture2D (vPrev , st) . xyz ;
22 vec3 fField = texture2D (fPrev , st) . xyz ;
23 vec3 dField = texture2D (dPrev , st) . xyz ;
24 vec3 pField = texture2D (pPrev , st) . xyz ;
25
26 // j a c o b i i t e r a t i o n .
27 vec3 coordVelocityLeft = texture2D (pPrev , vec2 ((st . x − pixdist)←↩

, st . y)) . xyz ;
28 vec3 coordVelocityRight = texture2D (pPrev , vec2 ((st . x + pixdist)←↩

, st . y)) . xyz ;
29 vec3 coordVelocityBottom = texture2D (pPrev , vec2 (st . x , (st . y − ←↩

pixdist))) . xyz ;
30 vec3 coordVelocityTop = texture2D (pPrev , vec2 (st . x , (st . y + ←↩

pixdist))) . xyz ;
31
32 f l o a t alpha = −pow (pixdist , 2 . 0) ;
33 f l o a t beta = 4 . 0 ;
34 f l o a t b = texture2D (dPrev , st . xy) . x ;
35
36 // Pressure f i e l d
37 pField = (coordVelocityLeft + coordVelocityRight + ←↩

coordVelocityBottom + coordVelocityTop + (alpha ∗ b)) / beta ;
38
39 gl FragData [0] = vec4 (vField , 1 . 0) ;
40 gl FragData [1] = vec4 (fField , 1 . 0) ;
41 gl FragData [2] = vec4 (dField , 1 . 0) ;
42 gl FragData [3] = vec4 (pField , 1 . 0) ;
43
44 }

Listing A.4: Jacobi iteration shader (pressure field)

1 uniform i n t frame ;
2 uniform i n t winWidth ;
3 uniform i n t winHeight ;
4 uniform sampler2D vPrev ;
5 uniform sampler2D vCurr ; // i s g l Fragdata [0]
6 uniform sampler2D fPrev ;
7 uniform sampler2D fCurr ; // i s g l Fragdata [1]
8 uniform sampler2D dCurr ;
9 uniform sampler2D dPrev ; // i s g l Fragdata [2]

10 uniform sampler2D pPrev ;
11 uniform sampler2D pCurr ; // i s g l Fragdata [3]
12 varying vec2 st ;
13 varying vec3 stp ;
14
15 f l o a t dt = 1 . 0 / 3 0 . 0 ;
16 f l o a t pixdist = 1.0/ f l o a t (winWidth) ;
17
18
19 void main (void)
20 {
21 vec3 vField = texture2D (vPrev , st) . xyz ;
22 vec3 fField = texture2D (fPrev , st) . xyz ;
23 vec3 dField = texture2D (dPrev , st) . xyz ;
24 vec3 pField = texture2D (pPrev , st) . xyz ;
25
26 vec3 coordPreassureLeft = texture2D (pPrev , vec2 ((st . x − pixdist)←↩

, st . y)) . xyz ;
27 vec3 coordPreassureRight = texture2D (pPrev , vec2 ((st . x + pixdist) , ←↩

st . y)) . xyz ;
28 vec3 coordPreassureBottom = texture2D (pPrev , vec2 (st . x , (st . y − ←↩

pixdist))) . xyz ;

27

29 vec3 coordPreassureTop = texture2D (pPrev , vec2 (st . x , (st . y + ←↩
pixdist))) . xyz ;

30
31 pixdist = 0.5 / pixdist ;
32 vField −= vec3 (pixdist ∗ (coordPreassureRight . x − coordPreassureLeft←↩

. x) ,
33 pixdist ∗ (coordPreassureTop . y − coordPreassureBottom . y) , ←↩

vField . z) ;
34
35 gl FragData [0] = vec4 (vField , 1 . 0 f) ;
36 gl FragData [1] = vec4 (fField , 1 . 0 f) ;
37 gl FragData [2] = vec4 (dField , 1 . 0 f) ;
38 gl FragData [3] = vec4 (pField , 1 . 0 f) ;
39
40 }

Listing A.5: Gradient shader

28

