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Linköpings Universitet

January 13, 2013



Abstract

This report covers the implementation of a Whitted ray tracer
made in the course Advanced Global Illumination and Rendering at
Linköpings University. The task was to implement a ray tracer that
could handle global illumination. We chose to implement a Whitted
ray tracer with perfect reflection and refraction.
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Structure of this report

The first section of this report will introduce the subject of digital images by
briefly explaining different rendering methods.A detailed description regard-
ing the implementation of a Whitted ray tracer is presented in section two.
After that, some benchmarks are presented.And finally section four,covers
the conclusions drawn.



1 Introduction

Since the beginning of computer graphics there have been an desire to de-
velop methods that produce photo realistic images. With todays knowledge,
algorithms and computational power, this goal has been reached. This pa-
per will present how a Whitted ray tracer has been implemented. In order
to gain deeper understanding of the underlying algorithms the fundamentals
of this technique will be discussed. Ray tracing lies in category referred to
as three-dimensional computer graphics. In summary, it is the generating of
images from a 3D scene, that can contain complex objects, different types
of materials and several light sources. Transport and scattering are the two
main components required for producing photorealistic images. Transport -
describing the light propagating in the scene. Scattering - to describe how
the transported light should interract with different materials and objects
in the scene.

1.1 Different rendering methods

Photorealism is very much dependent on what type of lightning method that
is used. A global lightning model gives a more realistic result than a local
model, since it can better represent how light propagates and interacts in
reality. The goal is to achieve a representation of light that is physically cor-
rect, which is not that easy in computer graphics. There are several different
methods capable of computing scenes with this type of light-representation:
Whitted ray tracing, Monte Carlo ray tracing, Two pass rendering and pho-
ton mapping are three examples of such. These are all different solutions
to the rendering equation seen in 2.4.2. All of the methods mentioned are
breifly explained below.

1.1.1 Local lightning models

Local lightning models only consider interaction between lights and objects,
which means that light arriving at a point can only come directly from a
light source. Local lightning models usually consists of the following three
components,an ambient, a specular and a diffuse term.

The ambient term refers to light that has been scattered equally in all di-
rections at a surface. In general this means that ambient light has bounced
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off many surfaces before it reaches the observer.

Diffuse light on the other hand, is light that generally comes from one direc-
tion. Once it hits a surface it gets scattered equally in all directions. The
results appears equally bright, regardless of the observer location.

When specular light hits a surface it tends to reflect in a particular di-
rection. It appears as a shiny spot on the material it interracts with, since
the light gets concentrated at a small patch of the object. Different materi-
als have different specular properties. For example, metal and plastic have
a high specular component while chalk for instance almost have none.

The simplest shading methods are the ones calculating the intensity based
on indicent angle of light. This is achieved by only using a surface color for
each polygon and a point light source [5]. Two methods in this category
are Gouraud and Phong shading. Gouraud shading interpolates the color
by averaging the vertices of the polygon. Each vertex have assigned colors,
and these are blended across the surface of the polygon. The result is far
more smooth compared with flat shading, since each vertext typically have
minimum three neighboring polygons. Phong shading on the other hand,
uses the colors of neighboring pixels to avarage the current pixel. When
light gets reflected in the Phong model, it consists of a diffuse, a specular
and an ambient component. By calculating the linear combination of the
three terms, the intensity of the current point can be obtained.

The Phong model is an improvement when compared to Gouraud shad-
ing, since it is capable of calculating a better approximation of the shad-
ing for a smooth surface. The advantage of Gouraud shading is that it is
computationally less expencive. Local lightning models like these are rela-
tively computationally cheap, but does not account for indirect lighning. To
achieve this a global lighning model is needed.

1.1.2 Global lightning models

Global lightning models can unlike local lightning models also handle indi-
rect light. This refers to light coming not only directly from a light source,
but also from surrounding objects. By using this type of lightning, based on
the full scene, it is possible to simulate effects such as color bleeding, soft
shadows and caustics. Since these effects add realism to rendered images,
global illumination methods are a requirement to reach photorealism. Many
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global illumination models that are used today is based on a ray tracing al-
gorithm introduced by Turner Whitted, in 1979. Images showing examples
of color bleeding, direct vs indirect lightning and caustics are presented in
figure 1.

Figure 1: Upper left: caustics, upper right: color bleeding, down left: indi-
rect lightnig, down right: direct ligtning
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1.1.3 Whitted ray tracing

The general idea of ray tracing is to produce 2D images from a 3D scene
by simulating how rays of light travel.The term ’ray tracing’ has over the
years been used for different algorithms. Ray tracing associated with global
illumination usually implies ‘stochastic ray tracing’, that allows one to com-
pute a full solution to the rendering equation. Whereas the traditional ray
tracing algorithm is often refered to as ’classic ray tracing’ or ’whitted ray
tracing.

One important difference between light in reality and ray tracing is that
rays are tracked backwards. This means rays are tracked from the observer
backwards into the scene and taking into account the information from the
light at the end. The biggest advantages of this is that all light rays coming
from each light source does not have to be simulated, since most of them
miss the observer anyway.

One ray per pixel is launched from the observer through an imageplane.
The imageplane is a 2D version of the render target. The ray tracer deter-
mines the nearest intersection point between the launched ray and the scene
geometry, see figure 3. From the intersection point a second ray is launched
to simulate:

• Reflection - A reflected ray continues on in the direction it is reflected
off the surface and intersects with the closest object in its path and
that is what is seen in the reflection.

• Refraction - The ray is bended as it passes into or out of an object.

• Shadow - To avoid tracing all rays in a scene, shadow rays are used to
test if a surface is visible to a light.

All these rays are then combined to set a color, and apply it to the pixel
the ray was casted through. If a ray hits a surface, and this surface faces
a light source, a ray is traced between this intersection point and the light.
If the ray hits a dark spot the ray ‘dies’ and stops tracing. Traditional ray
tracing includes only the first ray casted. What Whitted proposed, was to
continue this process and launch additional rays from the first intersection
point. This whole new layer of ray tracing added huge amounts of realism
to ray traced images.
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1.1.4 Radiosity

The concept behind radiosity is to compute the average light intensity per
area unit at smaller sections of objects, called patches. To calculate the
average radiosity in the scene, the algorithm uses stored illumination at the
surface of each object. The outgoing light is calculated as a function of
incoming light and the amount of radiated light, from each patch. Light
arriving directly from the light source is calculated in the first iteration in
the radiosity algorithm. In the second iteration, light from other objects is
added where the initial light has bounced. This results in an effect called
‘color bleeding’, which is indirect light that causes transfer of color between
nearby objects. Radiosity is a less popular metod compared to ray tracing,
and one of the main reasons is that it is more difficult to parallelize. When
dealing with ray tracing, each pixel is independent of neighbouring pixels
and that is a great advantage. Because of the fact that todays computers
and CPU:s have multiple cores, it is possible to allow the cores to handle
computations simultaneously, thus speeding up the process.

1.1.5 Monte Carlo ray tracing

Monte Carlo ray tracing is based on the Monte Carlo integration method
that descibes a stochastic behavior. It is an extension from the Whitted ray
tracer.

When a ray hits an object the new ray-direction gets determined by a
stochastic process. This involves using a hemisphere to calculate the new
direction. A method called Russian Roulette is used to determine if the ray
gets reflected, transmitted or absorbed by the object. The same method also
takes the objects material into consideration when determining this stochas-
tic process.

A drawback of the Monte Carlo method is that by letting the rays reflect in
random angles, noise gets introduced. If only one ray is reflected, it might
hit the lightsource and the pixel next to it might hit a wall, which will create
a large differece in pixel-color value (noise). By increasing the amount of
rays per pixel, an avrage color value can be calculated, thus reducing noise.

The Monte Carlo method is unbiased, since the stopping conditions for
each ray is calculated using a random process rather than setting it manually.
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This reminds of how light actually behaves in real life, which results in more
realistic computer generated images.

1.1.6 Two-pass rendering

The idea behind two pass rendering is to combine radiosity and ray tracing
in order to achive a more realistic representation of light transport. By
combining the best of the two it is possible to represent four different forms
of light transport:

• Diffuse - diffuse

• Diffuse - specular

• Specular - diffuse

• Specular - specular

The first pass of the two-pass rendering approach is based on enhanced
radiosity, while the second pass involves enhanced raytracing. In summary,
the two-pass rendering approach is very expensive, since it adds the cost
of both radiosity and ray tracing. Even though the combinations enhances
the result, there are still many light transport approximations remaining.
On the other hand, the two pass rendering approach concludes a promising
result. It produces convincing effects and works well for scenes consisting
of a small number of reflecting/transmitting objects. Also, it is capable of
computing high-quality images when combined with other methods.

1.1.7 Photon Mapping

The basic idea behind photon mapping is to decouple the scene represen-
tation from its geometry while storing the illumination information in a
structure called: photon map. Photon mapping is a two pass method that
firstly builds the global photon map by launching and tracing photos from
the light source. In the second pass the scene is rendered using the infor-
mation stored in the photon map created in the first pass. Below, a brief
explanation of the the two passes in photon mapping is presented:

Pass 1: Light emission and photon scattering. The first pass creates and
launches the photons from the light source into the scene. Photons propagate
flux and a light source with a higher intensity will produce more photons.
Each photon have a direction that is randomly chosen based on what type of
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light source it was launched from. The photons then propagate throughout
the scene and collide with different objects. When a photon hits an object,
it can be transmitted, absorbed or reflected.

Pass 2: Radiance estimate and rendering. The second pass renders the
the scene using a modified Monte Carlo ray tracer with help from the infor-
mation stored in the photon map. By having a photon map, that is detached
from the geometry in the scene, it is possible to render very complex scenes
with global illumination. Rays are launched from the camera into the scene,
and when a ray hits a point P on a surface, the illumination of nearby pho-
tons are collected to calculate the radiance contribution at P, seen in figure
2. By defining a small sphere around the point P and consider all photons
enclosed by the sphere together with their indicent direction d, it is possible
to decide which photons contribute light.

The concept of photon mapping was introduced by Henric Wann Jensen and
it is an efficient alternative to methods like Mote Carlo ray tracing. Jensen
has been developing and optimising the concept to handle for instance vol-
ume caustics. Interested readers are cited to Jensens article: Photons with
participating media [3] for further reading.

Figure 2: Radience esimate in photon mapping
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2 Background

The programming language used to write this Whitted ray tracer was C++.
When running the program the scene is presented and saved in a bitmap-file
(BMP). The scene used in this program contains spheres of different sizes
and material properties.

2.1 Denotations

Vectors and matrices will in this report be denoted as: ~X while scalars and
vertices will be denoted as: x

2.2 Cornell Box

The scene setup used is a Cornell box [6]. It is a widely used 3D test model to
determine the accuracy of rendering software. The scene consists of a ceiling,
a floor and 3 colored walls. Different objects are then placed in the scene in
order for it to be compared with the original Cornell box photograph.

2.3 Scene, camera and image plane

Each object is defined implicitly and is assigned a position in relation to
the world coordinates. All object have assigned material properties such as
color, reflection constant, refraction index, refraction amount and specular-
ity. Each point light source is given a position in the 3D scene. The camera
is assigned a position and determines the FOV - based on the distance to
the image-plane located in front of the camera, see figure 3. Field of view
determines how much of the scene is visible. The camera has no physical
appearance, it only determines from where the rays are starting.

2.4 The rendering equation

The rendering equation was introduced by J.T Kajiya in 1986, it consists of
five parts and is used to calculate the total light at a point x in a direction
θ.
A simplified version of the rendering equation can be written like eq. 2.4.1
where Le is the emitted light (outgoing radiance) and Lr is the reflected
light.

L(x→ Θ) = (Le → Θ) + (Lr → Θ) (2.4.1)

8



Figure 3: Scene with camera, imageplane, lightsource and object [2]

Because of the fact that the term Lr represents reflected light from all direc-
tion of the hemisphere, equation 2.4.1 can be rewritten as an integral, seen
in 2.4.2

In equation 2.4.2 Lo is the outgoing light. Le Is still the emitted light.
The integral integrates over all directions ψ in the hemisphere around the
point x. fr is the bidirectional reflectance distribution function (BRDF)
which describes how the light is reflected at an opaque surface. Li is the
incoming light in a point x. Finally the cosine term attenuates the incoming
light based on the normal at point x together with incoming light direction.

Lo(x→ Θ) = (Le → Θ) +

∫
fr(x, ψ → Θ) ∗ Li(x← ψ) ∗ cos(Nx, ψ)dωψ

(2.4.2)

2.5 Intersections

In order to determine if any object has been hit by the launched ray, in-
tersections between them has to be checked. An implemented algorithm
determines which intersection method to use, based on what type of object
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the ray intersects with. First the distance from the observer to all inter-
section points in the scene is calculated. Secondly it is determined which
object is closest to the observer. This is the object shown. The different
intersections methiods are presented below.

2.5.1 Ray-plane intersection

A ray has an origin O, and a direction D. The equation describes a general
point on a line. This is called the ray-equation, see 2.5.1.

R(t) = O + t ∗D, t > 0 (2.5.1)

Equation 2.5.2 describes an infinite plane which is defined by its normal and
with a distance d from origo.

N ∗ P + d = 0;N ∗R(t) + d = 0 (2.5.2)

By inserting the ray-equation 2.5.1 into the plane-equation 2.5.2, t can be
solved in equation 2.5.3. t represents the distance and t bigger than zero
indicates that an object has been hit.

t = −O ∗N + d

D ∗N
(2.5.3)

2.5.2 Ray-shpere intersection

In 2.5.4 a point P lies on the surface of a sphere with centerpoint C and
radius r.

(P − C) ∗ (P − C) = r2 (2.5.4)

The P in the ray-equation 2.5.1 gets substiuted and makes it possible to
calculate t.

(O − t ∗D − C) ∗ (O − t ∗D − C) = r
2

(2.5.5)

2.6 Equations regarding reflections and refractions [4]

Equation 2.6.1 for reflected ray r:

~r =~i− 2 ∗ cos(θi) (2.6.1)

Equation 2.6.2 for refracted(transmitted) ray t:

~t =
n1

n2
~i− (

n1

n2
cos(θi) +

√
1− sin(θt)2)~n (2.6.2)
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cos(θi) =~i ∗ ~n (2.6.3)

sin(θt)
2 = (

n1

n2
) ∗ (1− cos(θi)2) (2.6.4)

Snell’s law is shown below in equation 2.6.5:

n1sin(Θ1) = n2sin(Θ2) (2.6.5)

Figure 4: Transmission ~t and perfect reflection ~r [4]

2.7 Shadows

The Whitted ray tracer implemented have so called hard shadows. These
are calculated by shooting a ray from the eye and calculating the closest
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intersection point with an object. We then, from this intersection point,
shoot a shadow ray towards the light and check if there is any intersection
occuring between them. See figure 3. If infact one occurs, that pixel will be
set to black.

2.8 Reflections

The reflecting rays are only being calculated when hitting specular objects.
If the object is diffuse, the ray will be terminated. What needs to be kept
in mind is that the ray looses importance (energy) every time it hits an
object depending on how specular it is. If the energy gets too low, the it-
eration stops. We only use the perfect reflection (figure 4) since we have
implmenteted a Whitted ray-tracer.

2.9 Refractions

When calculating refracting rays there are a few more things to handle.
First of all checking if the object is transparant. If it is, the right refraction
coefficient need to be applied to the chosen material. This means that we
need to use snells law2.6.5 to calculate how the ray is bending into the
transparent medium. Now comes the tricky part. When the ray is inside
the object , the normal has to be flipped, the refraction coefficients swapped
and before leaving the object, reflect another ray inside.

2.10 The algorithm for the function raytrace(...)

1. if( Num of iter <max iter OR importance >min importance )

2. then

3. return

4. Calculate the closest intersection point

5. Calculate the normal in the intersection point

6. Calculate refraction

7. if( intersected object refraction amount >0 )

8. then

9. if( inside object )
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10. then

11. turn normal

12. switch refraction coeficient

13. Calculate new refraction ray

14. Calculate reflection

15. if( intersected object reflection amount >0 )

16. then

17. Calculate new reflective ray

18. for( all lights in the scene )

19. Calculate the light direction

20. Calculate the shadowray

21. if ( intesection point not in shadow )

22. then

23. Calculate lambert - Diffuse shading

24. Set lambert color

25. Calculate specular - Blinn phong

26. if( Blinn not equal to 0 )

27. then

28. Set specular color

3 Results and benchmarks

The tests have been performed on a laptop with an Intel i7-3610M 2.38Hz
8-core processor with 8GB 1600MHz of RAM.
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Table 1: Recursion depth benchmarks
Recursion depth Time (seconds)

1 16

5 16

10 16

20 16

Table 2: Resolution - benchmarks
Resolution (pixels) Time (seconds)

100x100 1 s

300x300 6 s

600x600 25 s

1000x1000 78 s

1200x1200 122 s

Table 3: Material properties - benchmarks
Resolution (pixels) Time (seconds) Scene

500x500 16 s Three totally diffuse sphere

500x500 17 s Three totally reflective spheres

500x500 18 s Three totally refractive spheres

500x500 18 s 3 spheres: reflective, refractive and diffuse

3.1 Benchmarks

From Table 1 it is possible to conclude that the number of times the ray
gets reflected and refracted does not affect the render time significantly. The
images was rendered with the resolution 500 x 500 pixels.

The information in Table 2 indicates that the render time increases suffiently
with the number of rendered pixels.

From Table 3 there is a small indication that refraction and reflection ex-
tends the render time. In summary increasing the resolutin and/or the
number of objects in the scene will result in longer render time. Especially
when it comes to reflective and refractive objects. This is not suprising since
alot more computations will need to be performed.
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3.2 Results

Figure 5: An image rendering with the Whitted ray tracer. Resolution
1200x1200. The scene contains of two point ligh sources with slightly dif-
ferent position, hence the displacement of the different shadows seen on the
back wall.
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Figure 6: An image rendering with the Whitted ray tracer. Resolution
1200x1200. The scene contains only one point light source, resulting in hard
shadows.
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Figure 7: An image rendering with the Whitted ray tracer. Resolution
1200x1200. The scene consists of one point light source together with two
intersecting glass spheres (refraction index: 1.5).
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4 Discussion

Implementing a Whitted ray tracer is a good way to gain knowledge about
the basic concept of light transportation within a scene. A fully functional
ray tracer requires a framework that can handle:

• intersections between rays and different object

• camera and scene definitions

• material properties

Our goal was to implement a Whitted ray tracer and fully understand the
concept behind it. We chose the simpler alternative rather than implement-
ing a Monte Carlo ray tracer since we did not have any previous knowledge
regarding the implementation. So this project has been instructive but still
very challenging, despite the fact that we had previous knowledge about the
basics in computer graphics.

One of many improvements of the program could be to extend the existing
framework to a Monte Carlo ray tracer. This would include an extension of
the path tracer with Russian roulette sampling in order to obtain a unbiased
stopping condition for the propagating rays.

The material class can also be extended with a BRDF to enable correct
ray-surface interactions.

Since we only use one ray per pixel, our result suffers from aliasing. One
way to reduce the amount of aliasing effects is to implement sumpersam-
pling, by subdividing each pixel and then select points on the imageplane
each corresponding to one subpixel.

Multiprocessing support would also be an step forward in order to improve
the rendering time. By allowing the cores to run calculations simultane-
ously, the process could be parallelised and sped up drastically. Another
component that increases efficiency is optimising the intersection calcula-
tions. This can be done by implementing a tree structure that reduces the
number of unnecessary intersections.

After having implemented a Monte Carlo ray tracer, one further improve-
ment would be to extend it by combining it with photon mapping. This
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would speed up the render time and simultaneously give better result with
less noise.
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