
LINKÖPINGS UNIVERSITET

Procedural game made in WebGL
TNM084 - Procedural methods for pictures

Anders Nord - andno922@student.liu.se

August 19, 2013

1 INTRODUCTION

This report will discuss using a procedural sim-
plex noise function [3] in WebGL and imple-
ment it in a game.

Simplex noise is a version comparable to
perlin noise and was designed to be less com-
putational than the original version of noise.
A great advantage with procedural functions
is that they are calculated mathematically and
appear very random. For a game, this can
come in handy in many different ways.

1.1 GAME IDEA

The idea for the game is pretty simple. The
z-axis of the ground is depending on the value
obtained from the noise function. This creates
a wave-looking surface. When the surface is
below a certain value, it changes colour to blue
and gives damage to the player. The player is
supposed to watch out for the blue "water" as
seen in fig 1.1. The other objective is to get

as far north as possible, before running out of
life.

Figure 1.1: The player gets hit by the water and
looses the game

1



2 METHOD

So the game was implemented in WebGL
which means shaders. WebGL communicates
with the graphics-card through OpenGL ES
2.0-standard shaders. To access these in html,
javascript is being utilized. The matrix library
used was glMatrix v0.9.5 [4].

The surface is created from a number of
calls to the noise-function. All with different
inputs. As seen in [1, p. 4 & 7] there are a few
regular procedural patterns. The procedural
pattern in this game is a mix of a couple of
these. The squares that can be seen in the
water, as in fig 1.1, 2.1 and 2.2, is basically only
for visual reasons. This is achieved by only
adding the extra noise-function-calls after it
is known that the first noise-value is below a
certain value, or in this case, sea-level.

The noise-function most commonly uses
the texture-coordinates and some form of vari-
able affected by time as input. This creates
different values all over the canvas. To address
the anti-aliasing that can appear, the built in
smoothstep-function is being used. This is ba-
sically an interpolation method, see [1, p. 5]
or section 1.3 in [1] for a more detailed expla-
nation.

Two different shaders was created. One for
the player and one for the surface. The player-
shader takes care of rendering and moving the
player(cube) accordingly to how the surface
is moving in the z-axis. The surface shader
renders the surface according to a few differ-
ent calls to the noise-function, as mentioned
earlier.

To be able to account for a hit, the scene
is first rendered to a texture, by using a
FBO(Frame Buffer Object), from above. See
fig 2.1. The textures centre, with a kernel ac-
cording to the size of the cube(player), is then
being checked for the colour red. If any pixel
in this area is red, it means that the player is
below the surface, and is supposed to loose

health. See fig 2.1

Figure 2.1: The texture rendered from the FBO.
Scene seen from above.

The scene is then rendered again after un-
binding the FBO. This time the view is being
rotated so a more 3D-like-view is shown to the
player. See fig 2.2.

Figure 2.2: The game-view

The shading of the surface is only depend-
ing on its value i the z-axis. The player on the

2



other hand, is being shaded depending on a
light-source. The light is located above the
cubes starting position. The colour value of
the cube is then calculated based on the dot
product between its normals and the direc-
tion of the lightsource. This is done for every
pixel, in the fragment shader and is called pix-
elshading. See fig 2.3

Figure 2.3: The player shaded by pixelshading

2.1 COMPUTER SPECS

The project were run on this machine:

Processor: Intel Core i7 3610QM 2,3 GHz
Memory : 8 GB of DDR3 1600 MHz SDRAM
Graphics card: Intel(R) HD Graphics 4000 that
has a graphics memory of 1792 MB
OS: Windows 8 64-bit

3 DISCUSSION

It has been a fun experience working with a
procedural pattern. It creates new possibili-
ties and forces you to think outside the box.
They can be very helpful in the sense that tex-
tures might not be needed necessary. This
could solve problems that exist in games when
using textures. But it does take some computa-
tional power so there will always be a decision
to be made.

Something that would have been pleasant
to add to the game is blurring the picture
when loosing health. The more you loose, the
blurrier it gets. This might be added in future
versions.

REFERENCES

[1] Stefan Gustavson, http://webstaff.
itn.liu.se/~stegu/TNM084-2012/
proceduraltextures.pdf.

[2] Stefan Gustavson, http://webstaff.
itn.liu.se/~stegu/TNM084-2012/
webgl/shadertutorial.html.

[3] Ashima Arts & Stefan Gustavson, https:
//github.com/ashima/webgl-noise.

[4] Matrix library, https://code.google.
com/p/glmatrix/wiki/Usage.

3

http://webstaff.itn.liu.se/~stegu/TNM084-2012/proceduraltextures.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2012/proceduraltextures.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2012/proceduraltextures.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2012/webgl/shadertutorial.html
http://webstaff.itn.liu.se/~stegu/TNM084-2012/webgl/shadertutorial.html
http://webstaff.itn.liu.se/~stegu/TNM084-2012/webgl/shadertutorial.html
https://github.com/ashima/webgl-noise
https://github.com/ashima/webgl-noise
https://code.google.com/p/glmatrix/wiki/Usage
https://code.google.com/p/glmatrix/wiki/Usage

	Introduction
	Game idea

	Method
	Computer specs

	Discussion

